organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

5,6-O-Isopropylidene-3-C-methyl-Dmannono-1,4-lactone

Louise A. Curran,^a Nigel A. Jones,^a* Sarah F. Jenkinson,^a David J. Watkin^b and George W. J. Fleet^a

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: nigel.jones@chem.ox.ac.uk

Received 20 June 2007; accepted 26 June 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.094; data-to-parameter ratio = 9.0.

The relative configuration of the title compound, $C_{10}H_{16}O_6$, was firmly established by X-ray crystallographic analysis. The absolute configuration was determined by the use of 2-Cmethyl-D-arabinose as the starting material. The crystal structure exists as hydrogen-bonded sheets lying approximately perpendicular to c.

Related literature

For related literature see: Mitchell et al. (2007); Hotchkiss et al. (2006); Soengas et al. (2005); Bream et al. (2006); Simone et al. (2007); Fekete et al. (2006); Görbitz (1999); Jenkinson et al. (2007); Jones et al. (2007); Kocharova et al. (2000); Kwon et al. (2004); Lichtenthaler & Peters (2004); Parker et al. (2006); Schumacher et al. (1977).

Experimental

Crystal data

C10H16O6 $M_r = 232.23$ Monoclinic, P21 a = 5.9838 (3) Å b = 11.7424 (5) Å c = 7.9189 (5) Å $\beta = 91.8112 \ (18)^{\circ}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DENZO/SCALEPACK;

 $V = 556.14 (5) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.12 \text{ mm}^-$ T = 150 K $0.20 \times 0.20 \times 0.05~\text{mm}$

Otwinowski & Minor, 1997) $T_{\rm min} = 0.87, \ T_{\rm max} = 0.99$ 5136 measured reflections

1310 independent reflections 1078 reflections with $I > 2.0\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	1 restraint
$wR(F^2) = 0.094$	H-atom parameters constrained
S = 0.91	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
1310 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
145 parameters	

 $R_{\rm int} = 0.059$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O13-H5···O4 ⁱ	0.85	1.95	2.787 (2)	170
$O15{-}H14{\cdots}O14^{ii}$	0.83	2.05	2.848 (2)	163

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + 2$; (ii) x + 1, y, z.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2444).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Bream, R., Watkin, D., Soengas, R., Eastwick-Field, V. & Fleet, G. W. J. (2006). Acta Cryst. E62, 0977-0979.
- Fekete, A., Gyergyoi, K., Kover, K. E., Bajza, I. & Liptak, A. (2006). Carbohydr. Res. 341, 1312-1321.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315-318.
- Jenkinson, S. F., Jones, N. A., Moussa, A., Stewart, A. J., Heinz, T. & Fleet, G. W. J. (2007). Tetrahedron Lett. 48, 4441-4445.
- Jones, N. A., Watkin, D. J., Curran, L. A., Jenkinson, S. F. & Fleet, G. W. J. (2007). Acta Cryst. E63, 0992-0994.
- Kocharova, N. A., Knirel, Y. A., Widmalm, G., Jansson, P. E. & Moran, A. P. (2000). Biochemistry, 39, 4755-4760.
- Kwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901-3904.
- Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.
- Mitchell, D. A., Jones, N. A., Hunter, S. J., Cook, J. M. D., Jenkinson, S. F., Wormald, M. R., Dwek, R. A. & Fleet, G. W. J. (2007). Tetrahedron Asymmetry 18. In the press.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Parker, S. G., Watkin, D. J., Simone, M. I. & Fleet, G. W. J. (2006). Acta Cryst. E62 03961-03963
- Schumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food Chem. 25, 310-320.
- Simone, M., Fleet, G. W. J. & Watkin, D. J. (2007). Acta Cryst. E63, 0799-0801.
- Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

supplementary materials

Acta Cryst. (2007). E63, o3416 [doi:10.1107/S160053680703125X]

5,6-O-Isopropylidene-3-C-methyl-D-mannono-1,4-lactone

L. A. Curran, N. A. Jones, S. F. Jenkinson, D. J. Watkin and G. W. J. Fleet

Comment

Carbohydrates are one of the most varied cheap chiral building blocks (Lichtenthaler & Peters, 2004) available. Currently, free sugars and their lactones with a carbon branch at C-3 have been relatively unstudied with only limited examples in the literarture. Examples of sugars with a carbon branch at C-3 include: a 3-*C*-methylpentonolactone of unknown stereo-chemistry, isolated from cigarette smoke (Schumacher *et al.*, 1977); 3-*C*-methyl-D-mannose (Kwon *et al.*, 2004), one of the components of the trisaccharide repeating unit of the polysaccharide from Helicobacter pylori (Kocharova *et al.*, 2000); and a derivative of 3-*C*-methyl-*L*-mannose which is one of the sugars in a pentasaccharide hapten of the GPL of Mycobacterium avium serovar (Fekete *et al.*, 2006).

The Kiliani ascension of 2-*C*-carbon-substituted carbohydrates has proved to be a valuable route towards 3-*C*-hydroxymethyl branched sugars (Parker *et al.*, 2006; Simone *et al.*, 2007) and 3-*C*-methyl branched sugars (Bream *et al.*, 2006; Jones, Watkin *et al.* 2007). Recent biological studies on branched mannose derivatives have shown that this class of compound could have potential use as therapeutics (Mitchell *et al.* 2007).

The crystal structure exists as hydrogen bonded ribbons lying parallel to the *ab*-face (see Fig. 2).

Experimental

The reaction of cyanide in water with 2-*C*-methyl-D-arabinose (Jenkinson *et al.* 2007), derived from 2-*C*-methyl-D-arabinonolactone, (Hotchkiss *et al.*, 2006), gave a mixture of isomeric lactones that could be separated by treatment with acetone and copper sulfate, in the presence of sulfuric acid, to afford three protected lactones. The title compound was crystal-lized from cyclohexane and ethyl acetate: m.p. 390–391 K; $[\alpha]_D^{22}$ +25.9 (*c*, 0.34 in acetone).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned on the basis of the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.15) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/SCALEPACK*, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. The packing of the title compound projected along the *a*-axis. Hydrogen bonds are shown as dotted lines.

Fig. 3. The reaction scheme.

5,6-O-Isopropylidene-3-C-methyl-D-mannono-1,4-lactone

Crystal data	
$C_{10}H_{16}O_{6}$	$F_{000} = 248$
$M_r = 232.23$	$D_{\rm x} = 1.387 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, <i>P</i> 2 ₁	Melting point: ?? K
Hall symbol: P 2yb	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 5.9838 (3) Å	Cell parameters from 1263 reflections
<i>b</i> = 11.7424 (5) Å	$\theta = 5-27^{\circ}$
c = 7.9189 (5) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\beta = 91.8112 \ (18)^{\circ}$	T = 150 K
$V = 556.14 (5) \text{ Å}^3$	Plate, colourless
Z = 2	$0.20\times0.20\times0.05~mm$

Data collection

Nonius KappaCCD diffractometer	1078 reflections with $I > 2.0\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.059$
T = 150 K	$\theta_{\text{max}} = 27.4^{\circ}$
ω scans	$\theta_{\min} = 5.2^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -7 \rightarrow 7$
$T_{\min} = 0.87, \ T_{\max} = 0.99$	$k = -15 \rightarrow 15$
5136 measured reflections	$l = -10 \rightarrow 10$

1310 independent reflections

Refinement

Refinement on F^2 H-atom parameters constrained $w = 1/[\sigma^2(F^2) + (0.06P)^2 + 0.02P],$ Least-squares matrix: full where $P = [\max(F_0^2, 0) + 2F_c^2]/3$ $R[F^2 > 2\sigma(F^2)] = 0.040$ $(\Delta/\sigma)_{\text{max}} = 0.0001$ $wR(F^2) = 0.094$ $\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$ *S* = 0.91 $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ 1310 reflections Extinction correction: None 145 parameters 1 restraint Primary atom site location: structure-invariant direct methods Hydrogen site location: inferred from neighbouring sites

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.3390 (4)	0.2320 (2)	0.9976 (3)	0.0194
C2	0.1635 (4)	0.3068 (2)	0.9080 (3)	0.0202
C3	0.2339 (4)	0.3664 (2)	0.7497 (3)	0.0209
O4	0.0474 (3)	0.43187 (18)	0.6849 (2)	0.0241
C5	0.0862 (4)	0.4539 (3)	0.5098 (3)	0.0262
O6	0.2150 (4)	0.3591 (2)	0.4546 (3)	0.0505
C7	0.2924 (4)	0.2945 (3)	0.5966 (4)	0.0269
C8	0.2197 (5)	0.5628 (3)	0.4909 (4)	0.0385
C9	-0.1355 (5)	0.4558 (3)	0.4145 (4)	0.0353
O10	-0.0229 (3)	0.22944 (17)	0.8686 (2)	0.0216
C11	-0.0132 (4)	0.1416 (2)	0.9765 (3)	0.0207
C12	0.1838 (4)	0.1572 (2)	1.1009 (3)	0.0215
013	0.2833 (3)	0.05512 (19)	1.1556 (2)	0.0284
O14	-0.1473 (3)	0.06496 (18)	0.9717 (2)	0.0263
015	0.4355 (3)	0.16416 (18)	0.8701 (2)	0.0222
C16	0.5120 (4)	0.2978 (3)	1.1032 (3)	0.0266
H21	0.1127	0.3647	0.9932	0.0251*
H31	0.3612	0.4177	0.7788	0.0250*
H71	0.4529	0.2827	0.5951	0.0338*
H72	0.2128	0.2210	0.6050	0.0333*
H81	0.2604	0.5685	0.3759	0.0592*
H82	0.3528	0.5599	0.5632	0.0594*
H83	0.1252	0.6273	0.5184	0.0589*
H91	-0.1026	0.4632	0.2952	0.0543*
H92	-0.2096	0.3842	0.4309	0.0545*
H93	-0.2261	0.5192	0.4510	0.0548*
H121	0.1288	0.2008	1.2001	0.0268*

supplementary materials

H161	0.6123	0.2442	1.1622	0.0432*
H162	0.6000	0.3479	1.0344	0.0429*
H163	0.4378	0.3414	1.1921	0.0431*
H5	0.1952	0.0124	1.2084	0.0458*
H14	0.5420	0.1310	0.9170	0.0361*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C1	0.0201 (11)	0.0210 (14)	0.0170 (13)	-0.0016 (11)	0.0011 (10)	-0.0006 (11)
C2	0.0193 (11)	0.0194 (13)	0.0219 (14)	-0.0025 (11)	0.0016 (9)	-0.0030 (12)
C3	0.0213 (12)	0.0166 (13)	0.0245 (14)	-0.0003 (11)	-0.0030 (10)	0.0021 (12)
O4	0.0276 (8)	0.0221 (10)	0.0227 (10)	0.0063 (8)	0.0027 (7)	0.0030 (8)
C5	0.0315 (13)	0.0271 (15)	0.0203 (14)	0.0050 (13)	0.0058 (11)	0.0033 (13)
O6	0.0806 (17)	0.0499 (15)	0.0216 (11)	0.0378 (14)	0.0091 (11)	0.0060 (11)
C7	0.0299 (13)	0.0251 (15)	0.0260 (15)	0.0049 (13)	0.0060 (11)	0.0031 (13)
C8	0.0337 (14)	0.048 (2)	0.0341 (17)	-0.0084 (16)	-0.0006 (13)	0.0133 (17)
C9	0.0393 (14)	0.0369 (18)	0.0295 (16)	-0.0079 (15)	-0.0010 (13)	0.0073 (16)
O10	0.0182 (8)	0.0204 (10)	0.0261 (10)	-0.0005 (8)	-0.0011 (7)	0.0039 (8)
C11	0.0177 (10)	0.0200 (14)	0.0246 (15)	0.0029 (11)	0.0038 (10)	0.0013 (12)
C12	0.0198 (11)	0.0214 (14)	0.0232 (14)	0.0026 (11)	-0.0005 (10)	0.0039 (12)
O13	0.0205 (8)	0.0270 (10)	0.0376 (11)	0.0013 (8)	-0.0011 (8)	0.0139 (10)
O14	0.0204 (8)	0.0224 (10)	0.0361 (11)	-0.0016 (9)	0.0004 (8)	0.0061 (9)
O15	0.0210 (8)	0.0241 (10)	0.0215 (10)	0.0052 (8)	0.0008 (7)	0.0002 (9)
C16	0.0241 (12)	0.0303 (16)	0.0251 (15)	-0.0078 (13)	-0.0032 (11)	-0.0030 (13)

Geometric parameters (Å, °)

0.967
0.974
0.975
0.961
0.970
1.339 (3)
1.523 (3)
1.206 (3)
1.401 (3)
1.002
0.848
0.825
0.978
0.969
0.987
110.9
107.7
109.7

C2C1C16	114.2 (2)	H81—C8—H82	109.8
C12—C1—C16	114.2 (2)	С5—С8—Н83	108.8
O15—C1—C16	112.96 (19)	H81—C8—H83	109.1
C1—C2—C3	116.6 (2)	H82—C8—H83	111.7
C1—C2—O10	104.5 (2)	С5—С9—Н91	106.6
C3—C2—O10	109.98 (19)	С5—С9—Н92	108.8
C1—C2—H21	107.1	H91—C9—H92	108.4
C3—C2—H21	109.9	С5—С9—Н93	110.7
O10-C2-H21	108.4	Н91—С9—Н93	110.6
C2—C3—O4	108.1 (2)	Н92—С9—Н93	111.5
C2—C3—C7	118.7 (2)	C2-010-C11	108.93 (17)
O4—C3—C7	101.98 (19)	O10-C11-C12	109.7 (2)
С2—С3—Н31	108.7	O10-C11-O14	122.6 (2)
O4—C3—H31	109.9	C12-C11-O14	127.6 (2)
С7—С3—Н31	109.1	C1-C12-C11	101.1 (2)
C3—O4—C5	107.09 (19)	C1—C12—O13	113.38 (19)
O4—C5—O6	105.1 (2)	C11-C12-O13	114.2 (2)
O4—C5—C8	110.4 (2)	C1-C12-H121	110.1
O6—C5—C8	109.6 (2)	C11—C12—H121	107.5
O4—C5—C9	108.6 (2)	O13—C12—H121	110.0
O6—C5—C9	109.5 (3)	С12—О13—Н5	113.2
C8—C5—C9	113.3 (2)	C1-015-H14	105.7
C5—O6—C7	109.8 (2)	C1-C16-H161	109.4
C3—C7—O6	104.8 (2)	C1—C16—H162	111.8
С3—С7—Н71	109.9	H161—C16—H162	108.8
O6—C7—H71	111.3	C1—C16—H163	110.0
С3—С7—Н72	107.9	H161—C16—H163	106.0
O6—C7—H72	111.9	H162—C16—H163	110.6

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
013—H5…O4 ⁱ	0.85	1.95	2.787 (2)	170
O15—H14…O14 ⁱⁱ	0.83	2.05	2.848 (2)	163
Summatry adds: (i) $-r \rightarrow \frac{1}{2} - \frac{1}{2}$ (ii) $r+1 \rightarrow r$				

Symmetry codes: (i) -x, y-1/2, -z+2; (ii) x+1, y, z.

